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Abstract
Hepatic encephalopathy describes the array of neurological alterations that
occur during acute liver failure or chronic liver injury. While key players in the
pathogenesis of hepatic encephalopathy, such as increases in brain ammonia,
alterations in neurosteroid levels, and neuroinflammation, have been identified,
there is still a paucity in our knowledge of the precise pathogenic mechanism.
This review gives a brief overview of our understanding of the pathogenesis of
hepatic encephalopathy and then summarizes the significant recent advances
made in clinical and basic research contributing to our understanding,
diagnosis, and possible treatment of hepatic encephalopathy. A literature
search using the PubMed database was conducted in May 2017 using “hepatic
encephalopathy” as a keyword, and selected manuscripts were limited to those
research articles published since May 2014. While the authors acknowledge
that many significant advances have been made in the understanding of
hepatic encephalopathy prior to May 2014, we have limited the scope of this
review to the previous three years only.
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Introduction
Advanced liver disease is well known for its systemic consequences, 
notably its profound effects on brain function, in its most clas-
sic form, known as hepatic encephalopathy (HE). HE is currently 
defined as a brain dysfunction secondary to liver insufficiency and/
or portosystemic shunting that manifests as a broad spectrum of 
neuropsychiatric abnormalities ranging from subclinical alterations 
to coma1. It remains a diagnosis of exclusion1. HE is frequent: overt 
HE is found in some 30–40% of patients with cirrhosis1. In 2009, 
HE resulted in 22,931 hospitalizations with an average cost of  
each stay ranging from $46,663–$63,1082. This highlights both 
the frequency of HE and the economic burden it currently places  
on the US.

The broad spectrum of HE has led to the development of multiple 
grading and classification systems to better categorize the severity 
of disease. It is currently a recommendation by the American Asso-
ciation for the Study of Liver Disease (AASLD) that HE should 
be classified according to the type of underlying disease, severity 
of manifestations, and precipitating factors1. Types A, B, and C of 
HE define the underlying disease. Type A (acute) is due to acute 
liver failure (ALF), type B (bypass) is due to portosystemic shunt-
ing without intrinsic liver disease, and type C (cirrhosis) is due to 
cirrhosis1. Each type has differing symptoms at presentation owing 
to the varying etiologies.

ALF, with the original term being fulminant hepatic failure, is 
defined as severe liver injury in the absence of pre-existing liver 
disease. The etiology of ALF is complex, ranging from viruses 
and drugs to genetic causes, with a vast majority remaining idi-
opathic3. In developing nations, hepatitis (A, B, and C) is the most 
common cause of ALF, while in the US, acetaminophen toxicity 
accounts for 39% of ALF cases3. Physical exam findings are often  
non-specific and generally reflect severe underlying liver dysfunc-
tion or complications thereof. ALF is currently a clinical diagnosis, 
made in the setting of acute liver injury in the context of abnormal 
liver tests (including dramatically elevated aminotransferases, and 
most importantly evidence of hepatocyte dysfunction demonstrated 
by a prolonged PT and increased INR3). Unique to type A is its 
association with increased intracranial pressure (ICP), thus car-
rying a risk for cerebral herniation1. It is believed that increased  
ICP results from cerebral edema secondary to hyperammonemia3. 
One current proposed mechanism is that in ALF the development 
of hyperammonemia outpaces the compensatory mechanisms  
seen in chronic liver disease3. Subsequently, ammonia increases 
intracellular osmolarity when it is metabolized to glutamine, result-
ing in cerebral edema causing increased ICP3.

Type B HE is secondary to portosystemic bypass or bypass with 
no intrinsic hepatocellular disease. Precipitating factors of HE 
in type B are factors that are known to increase ammonia, such 
as azotemia, infection, GI bleed, lactulose noncompliance, and  
constipation4. The most serious complication of transjugular  
intrahepatic portosystemic shunts (TIPS) is chronic recurrent HE 
that is refractory to standard treatment4. If severe enough, shunt 
revision may be warranted4.

Type C HE is associated with liver cirrhosis accompanied with 
either portal hypertension or portosystemic shunts1. The causes 
of cirrhosis are vast, ranging from viral, autoimmune, chronic bil-
iary disease, and fatty liver diseases to rare storage diseases such 
as hemochromatosis and Wilson’s disease5. Signs and symptoms 
of cirrhosis are often present and include spider angioma, muscle 
wasting, jaundice, ascites, and gynecomastia and testicular atrophy 
in men. The most common form of HE in type C is minimal HE 
(MHE), which affects nearly 80% of cirrhotics6. MHE affects the 
patient’s daily life, interfering with executive function including 
their working memory and orientation6. Physical examination in 
MHE is often normal, and patients may present with subtle abnor-
malities that can be diagnosed by experts using specialized neuro-
physiologic tests, such as the critical flicker frequency test (CFF)6. 
Currently, there is no gold standard test, and a number of studies are 
currently investigating the efficacy and use of them7.

Pathophysiology
As stated above, HE is broken into three major types because of its 
multiple etiologies. HE presents with a broad spectrum of symp-
toms ranging from subclinical to comatose. This wide range of 
presentation is due to the multifaceted pathophysiology that under-
lies this complex disease. Highlighted below is the role of ammonia 
and inflammation in the development of HE.

Currently, ammonia is the best-characterized neurotoxin in the 
pathogenesis of HE and also appears to be important in the gen-
esis of astrocyte swelling8. In healthy individuals, nitrogenous 
compounds, such as proteins, are metabolized by gut microflora 
and transported to the liver in the form of ammonia8. In the liver, 
ammonia is metabolized by the urea cycle with the majority of the 
subsequent urea excreted renally8. Advanced liver disease or por-
tosystemic shunting leads to a buildup of ammonia in the blood8. 
Ammonia that builds up in the blood is then able to cross the blood–
brain barrier, where it is metabolized by astrocytes into glutamine8. 
Hence, levels of glutamine start to accumulate and lead to astro-
cyte swelling. This swelling can trigger a downward spiral leading 
to increase in production of reactive oxygen and nitrogen species, 
which can downstream target gene transcription and translation9. 
Animal models of HE emphasize that astrocyte and brain swelling 
is also a key feature. Among these features are swelling of astro-
cytes, vasoconstriction of blood vessels, increase in ICP, cerebral 
edema, reduced cerebral perfusion, and cerebral atrophy9. There are 
conflicting studies regarding the correlation of levels of ammonia 
and the degree of encephalopathy; however, evidence suggests that 
a reduction in levels of ammonia leads to reduced brain swelling9.

In addition to the ammonia hypothesis, inflammation and cytokines 
are thought to be major components in the development of HE, 
particularly in the setting of ALF with or without sepsis10. Septic 
encephalopathy is a well-documented phenomenon that closely 
resembles HE10. Although sepsis and ALF have varied pathogenic 
mechanisms, they share the same cardinal features of encephalopa-
thy, cardiovascular collapse, and coagulopathy10. Both sepsis and 
ALF result in an upregulation of inflammatory cytokines IL-1β, 
IL-6, and TNF-α10. Studies have shown that these inflammatory 
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cytokines compromise the blood–brain barrier and disrupt the per-
meability of the endothelial cells10. It is not surprising that sepsis 
can precipitate and worsen HE10. Cytokines, infection, and inflam-
mation play a significant role in the development of HE. Studies 
have implicated both ammonia and inflammation in the pathogen-
esis of HE10. Currently, it is proposed that these pathways have a 
synergistic effect on each other10.

Recent advances in understanding the pathogenesis 
of hepatic encephalopathy
Recent advances in the understanding of the pathogenesis of HE 
focus on the consequences of hyperammonemia and altered neuro-
transmission, and new studies have aimed to examine new poten-
tial targets such as bile acid signaling and their contribution to HE. 
Below is a summary of the latest findings (see also Figure 1).

Hyperammonemia
A major contributing factor to the development of HE is a buildup 
of ammonia. Liver-specific glutamine synthetase knockout (a key 
enzyme in ammonia metabolism) led to dramatically increased sys-
temic hyperammonemia and subsequent cerebral oxidative stress 
and cognitive changes11, consistent with the concept that the liver 
is integral in the maintenance of ammonia homeostasis throughout 
the body.

In the brain under hyperammonemic conditions, astrocytes  
rapidly convert blood-derived ammonia into glutamine, increas-
ing glutamine levels12. An understanding of the full array of  

consequences of hyperammonemia on astrocytic function in the 
context of HE is, as yet, unappreciated. Historically, it was thought 
that the effects of increased cerebral ammonia were increased 
oxidative stress, osmotic pressure, and subsequent astrocyte  
swelling. However, recent studies have demonstrated that ammo-
nia also has effects on many signal transduction pathways13–15, 
gene expression16, and post-translational protein modifications17, 
which together lead to subsequent impairment in astrocyte func-
tion and manifest as abnormal proliferation18,19, neurotransmitter  
release16, and even cellular senescence18. For example, hyperam-
monemia was recently associated with a transient increase in astro-
cyte intracellular calcium release13–15; the precise mechanism of 
action may be through activation of NMDA receptor13, the tran-
sient receptor potential channel 114, or the Cav1.2 L-type calcium 
channel15, or, more likely, a combination of all of the above. Given  
that calcium-mediated effects are an early event of many differ-
ent signal transduction pathways, the vast array of potential gene 
expression alterations due to hyperammonemia has not yet been 
defined.

A relatively novel mechanism by which ammonia may influence 
gene expression is via alterations in microRNA expression. Micro-
RNAs are small non-coding RNA sequences that play a role in gene 
silencing at the level of gene transcription as well as translation 
and can be regulated by oxidative stress. Exposure of astrocytes to 
ammonia dramatically altered microRNA profiles19, leading to an 
alteration in many target genes, including heme oxygenase 1. Pre-
venting ammonia-induced microRNA expression changes increased 

Figure 1. Summary of all factors known to contribute to the pathogenesis of hepatic encephalopathy.
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the expression of heme oxygenase 1 and prevented the ammonia-
induced inhibition of astrocyte proliferation and prevented the asso-
ciated cellular senescence19.

Lastly, though not surprisingly, ammonia has been shown to alter the 
expression of genes involved in the regulation of astrocytic gluta-
mate uptake and neurotransmitter release, such as the ephrin recep-
tors and their ligands16 and thrombospondin 120. Specifically, the 
treatment of astrocytes in culture with ammonia increased ephrin 
receptor 4 via an as-yet-undefined pathway that includes glutamine 
synthetase, NADPH oxidase, and nitric oxide synthase activities16. 
Conversely, chronic ammonia treatment decreased thrombospon-
din 1 expression in astrocytes, which subsequently decreased the 
expression of synaptic proteins in neurons20.

Ammonia may also contribute to the cell-to-cell crosstalk that 
occurs in HE. Specifically, the treatment of brain endothelial cells 
with ammonia, a mixture of cytokines, or lipopolysaccharide 
appeared to release factors that contribute to astrocyte swelling via 
the activation of Toll-like receptor 421. The understanding of cell–
cell interactions and communication and the role of ammonia in HE 
is still quite limited. In further support of the notion that cell–cell 
communication is involved in ammonia-induced events during HE, 
strategies to uncouple the gap junctions in astrocyte cultures signifi-
cantly attenuated key features of ammonia-induced neurotoxicity, 
such as membrane integrity, oxidative stress, and pro-inflammatory 
cytokine release22.

Oxidative stress
Oxidative stress and the generation of reactive oxygen and nitrogen 
species in the brain has long been associated with HE. It is thought 
that impaired mitochondrial function and downregulation of the 
expression of key anti-oxidation enzymes contribute to an increase 
in oxidative damage to membrane lipids, protein, and DNA23.

Recent studies have emphasized the importance of oxidative 
damage in the pathogenesis of HE, with various experimental  
treatments aimed at reducing reactive oxygen/nitrogen spe-
cies24–31 or restoring the activity of anti-oxidative enzymes such as  
catalase32, superoxide dismutase32, thioredoxin25, or glutathione 
peroxidase25. Of particular note was an elegant study by Bosoi 
et al.33, in which the authors utilized a rodent model of hyper-
ammonemia that was also treated with an inhibitor of glutathione;  
they found that a synergistic relationship between systemic oxida-
tive stress and hyperammonemia was required for the development  
of brain edema in HE33.

Brain energy metabolism
The pathogenesis of HE has long been associated with impairment 
in cerebral energy metabolism with alterations in glucose utiliza-
tion, glycolysis, and mitochondrial dysfunction (reviewed in Rama 
Rao and Norenberg34). Of particular interest are the changes in  
cerebral lactate levels during HE. Specifically, increased blood  
and cerebral lactate levels have been demonstrated in patients  
with HE35, in pig and rodent models of ALF36,37, and in acute  
hyperammonemia38. However, the increase in cerebral lactate in 
models of type C HE is not as clear-cut. Increased lactate has been 
observed in the plasma of patients with cirrhosis compared to age- 
and sex-matched controls39. Interestingly, there was no significant 

difference in plasma lactate levels between cirrhotic patients who 
exhibit symptoms of overt HE versus patients without overt HE, 
although the presence of MHE in the latter group could not be  
ruled out39. A parallel change in lactate levels in the brain was 
not evident in a longitudinal study using 1H and 31P mag-
netic resonance spectroscopy in a rodent model of type C HE12.  
Conversely, de novo synthesis of lactate was increased in the 
brain, and treatment with a lactate synthesis inhibitor attenuated  
HE-associated brain edema in this model40. This disparity between 
these two opposing observations may lie in the methodology used 
to detect the differences. However, recently, it was demonstrated 
that the transport of lactate through connexin-containing hemichan-
nels in astrocytes was impaired in the cerebral cortices of rats  
with type C HE owing, at least in part, to the actions of  
hyperammonemia41. Given that the astrocyte–neuron lactate shut-
tle hypothesis suggests that lactate production in astrocytes is  
able to fuel and regulate neuronal activity42, it was hypothesized 
that the impairment of lactate transport through hemichannels  
may be contributing to the pathogenesis of HE41.

Neuroinflammation
Brain inflammation (i.e. “neuroinflammation”) is a key feature in 
common with all types of HE and appears to be predominantly 
modulated by microglia, the resident macrophage-like cell in the 
brain. Indirect clinical evidence for microglial activation has been 
demonstrated by an upregulation of the microglial marker ionized 
calcium-binding adaptor molecule 1 (Iba-1), which was found to 
be increased in post mortem cortical brain tissue from patients 
with liver cirrhosis and HE compared to cirrhotic patients without 
HE43. In addition, a comprehensive gene expression profile analy-
sis showed that markers for both the pro-inflammatory M1 and the 
anti-inflammatory M2 microglial phenotypes were increased, sug-
gesting that both groups can be found in patients with HE caused 
by cirrhosis44.

The activation of microglia is a delicate balance between the 
pro-inflammatory and anti-inflammatory signals, which in physi-
ological conditions favors the dampening of microglia activation45. 
These signals may be derived from the microglia themselves or 
are as a result of cell-to-cell communication derived from neurons 
or astrocytes. Recently, the pro-inflammatory chemokine CCL2 
was demonstrated to be increased in neurons in a mouse model of 
type A HE46 and a concomitant decrease in the anti-inflammatory 
chemokine fractalkine45, thereby dysregulating the balance between 
opposing pro- and anti-inflammatory signals acting on receptors 
on microglia resulting in microglia activation. Strategies to either 
block CCL2 receptors or increase fractalkine signaling inhibited 
the microglia activation and attenuated the cognitive dysfunction 
observed in this model of HE, although the precise mechanism by 
which the balance between these two opposing signals is dysregu-
lated was not identified.

Interestingly, in the hyperammonemic rat model, microglia and 
astrocytes were activated with a concomitant increase in the expres-
sion of pro-inflammatory cytokines IL-1β and IL-647, suggesting 
that ammonia alone is capable of inducing neuroinflammation  
during HE, although it is unlikely that the modulation of  
neuroinflammation is solely the consequence of hyperammonemia 
during HE.
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Evidence to suggest a causal link between neuroinflammation and 
cognitive and motor function impairment during HE is mount-
ing. Strategies that specifically target and dampen the neuroin-
flammatory signals also offer attenuation of cognitive and motor 
deficits46,48–52, although care should be taken when interpreting 
data from experiments where the anti-inflammatory experimental 
agent is given systemically, as the mechanism of action may be via 
hepato-protection, thereby leading to a reduction in HE symptoms 
rather than as a direct modulatory effect on central neuroinflam-
mation. While treatment strategies aimed at dampening systemic 
inflammation may be beneficial for both the underlying liver dam-
age and the subsequent encephalopathy, from a basic science stand-
point aimed at elucidating the pathogenic pathways associated with 
the development of HE, the distinction between the actions of an 
experimental compound on the brain versus its actions on the liver 
should be distinguished.

Neurotransmitter dysfunction
The cognitive and neuromuscular deficits observed during HE 
are ultimately the result of altered neurotransmission, regard-
less of the mechanism53. Interestingly, there are opposing effects 
on glutamatergic neurotransmission depending upon the type of 
HE with increased extracellular glutamate levels observed after 
ALF, and a dampened glutamatergic neurotransmission observed 
during chronic liver disease53. During ALF, the activation of  
NMDA receptors on astrocytes downregulates the expression of 
Kir4.1, an inward rectifying potassium channel known to regulate 
ion and water homeostasis54 and contribute to neuronal dysfunc-
tion in other neurodegenerative diseases55. The precise role for  
Kir4.1 in type A HE is not clear. Furthermore, strate-
gies to block NMDA receptors in rats with ALF reduced the  
HE-associated changes in cerebral blood flow and brain lactate 
as well as increased the kidney clearance of ammonia, which 
collectively delayed or prevented the HE-associated mortality56.  
Conversely, during MHE due to chronic liver disease, memory 
impairment was associated with suppression of the glutamate–nitric 
oxide–cyclic guanosine monophosphate (GMP) pathway, which has 
been demonstrated in response to hyperammonemia57 or increased 
intracranial dopamine58, and strategies to restore this pathway  
also restore the learning ability of rats with HE57.

Both type A and type C HE are associated with increased GABA-
ergic tone. This is due to a number of factors: increased GABA  
concentrations59, increased GABA receptor expression59, and 
increased neurosteroids such as allopregnanolone, known to regu-
late GABA-ergic neurotransmission60. Neurosteroids are steroids 
produced de novo in the brain61. Their production and function are 
currently under investigation. Recently, experimental compounds 
aimed at either inhibiting neurosteroid synthesis62 or inhibiting the 
enhanced activation of GABAA receptors by neurosteroids63 attenu-
ated the deficits in motor co-ordination, spatial memory, and circa-
dian rhythms observed during HE62,63. These data were supported 
by the use of an inhibitor of another neurotransmitter system thought 
to be dysregulated during at least MHE: the dopamine system64. 
However, how this system is altered during HE remains unclear. It 
has been hypothesized that an increase in dopamine release from 
cirrhotic liver into the bloodstream contributes to the pathogenic 

features of MHE by inhibiting the glutamate–nitric oxide–cyclic 
GMP pathway in the hippocampus, thereby altering learning and 
memory ability58,64–66. Conversely, dopamine and serotonin levels 
were decreased in another model of MHE67.

Bile acids
Elevated circulating and cranial levels of bile acids have been 
observed in patients with HE as early as 1977, although our  
understanding of the implications of this observation are only just 
coming to light. Specifically, total bile acid content in the cerebro-
spinal fluid as well as in brain tissue was elevated in patients and 
rodent models of type A HE68,69 as well as type C HE70–72; however, 
the precise role of bile acids in HE remains controversial. Increased 
serum bile acids have been implicated in the increased blood–brain 
barrier permeability observed in a rat model of chronic liver  
disease70, thereby allowing access of bile acids and other signal-
ing molecules to the brain. In mice, azoxymethane (AOM) is 
used as a model for type A HE due to ALF69. Indeed, in the AOM 
mouse model of type A HE, increased total bile acid content was  
observed in the frontal cortex, and strategies to reduce circulat-
ing bile acids (e.g. cholestyramine feeding or the use of a geneti-
cally modified mouse with impaired bile acid synthesis) proved  
neuroprotective69.

Bile acids can exert their effects via many different receptors that 
result in an array of physiological responses. FXR is a nuclear 
bile acid receptor, and inhibition of FXR-mediated signaling in 
the frontal cortex conferred partial protection against the cogni-
tive deficit that occurs during HE69. Furthermore, aberrant bile 
acid signaling in the brain can also affect neuroinflammation by 
increasing pro-inflammatory CCL2 expression in neurons via a 
sphingosine-1-phosphate receptor 2-dependent mechanism, which  
subsequently leads to the activation of microglia and increase in 
pro-inflammatory cytokine expression73. Conversely, TGR5 is a 
membrane-bound G-protein-coupled bile acid receptor, the expres-
sion of which has been shown to decrease in the brain in conditions 
of hyperammonemia74. Activation of this receptor with specific 
agonists reduced the microglia activation and pro-inflammatory 
cytokine production observed in a mouse model of type A HE75.

Many therapeutic strategies to treat HE, such as lactulose and 
metronidazole, abolish gut microbiota with the aim of reducing 
ammonia production while also influencing the conjugation of  
secondary bile acids. By altering the bile acid pool, they gener-
ate protective effects by altering bile acid signaling. In support of 
this notion, feeding mice a diet enriched in particular bile acids, 
which does not alter the total bile acid pool but alters the balance 
of individual bile acids, changed the susceptibility of mice to the 
development of HE69. Specifically, mice fed a diet enriched with 
deoxycholic acid or cholic acid had significantly quicker neurologi-
cal decline compared to control-fed or ursodeoxycholic acid-fed 
mice69. These data raise the possibility that the elevation of cra-
nial bile acids as well as a change in specific bile acids in the bile 
acid pool contribute to the neurological decline associated with HE; 
further clinical studies that manipulate bile acids are necessary to 
determine whether these effects will be recapitulated in patients 
with HE.
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Blood–brain barrier permeability
The role of blood–brain barrier permeability is controversial in HE. 
No robust evidence of its breakdown exists; however, it is highly 
likely that bile acids and pro-inflammatory cytokines may affect its 
permeability70,76–79. In the AOM model of type A HE, permeability 
of the blood–brain barrier has been demonstrated as a late event 
during the development of HE78,79. Conversely, no changes in per-
meability could be detected by another group unless the mice were 
co-treated with trace amounts of lipopolysaccharide80, suggest-
ing a synergistic role for inflammation with other key HE-related  
features in the changes in blood–brain barrier permeability.  
Consistent with this notion was a study demonstrating that cir-
culating transforming growth factor-β (TGFβ) may contribute to  
the increased permeability of the blood–brain barrier in ALF78.

Evidence to suggest that blood–brain barrier permeability is 
increased in type C HE also exists. As stated above, increased  
permeability in the bile duct ligation model of HE is apparent and 
can be attributed, at least in part, to increased serum bile acids70. 
Associated with this increased permeability was a decrease in 
expression of tight junction proteins76.

Recent advances in the diagnosis of hepatic 
encephalopathy
HE remains a diagnosis of exclusion with a broad spectrum of 
clinical manifestations. The multifaceted presentation poses many  
limitations to the diagnosis of HE. Guidelines by the AASLD 
emphasize the use of specialized psychometric tests in the diag-
nosis of HE81–83. A multitude of tests exist, with some of the most  
studied being the psychomotor hepatic encephalopathy score 
(PHES), CFF, Stroop effect test, and electroencephalogram 
(EEG)81,84.

PHES is a battery of pencil and paper tests aimed at diagnosing 
HE85. PHES was studied in Turkey and Romania in order to stand-
ardize a normal value in a healthy population and also assess its 
utility85,86. Age and educational status were shown to affect score85.

Apart from PHES, a newly developed electronic number connection 
test (eNCT) was investigated by Wuensh et al.87. This test flashes 
the numbers 1–25 on a screen and requires the participant to click 
them in order while being timed; those patients with HE were found 
to be much slower87. This test promises to be an easier and faster 
method than PHES87.

In the CFF, patients are shown a light flicker that progressively 
decreases in frequency88. They must identify the frequency at 
which the light flickers88. CFF can be used as a measure of corti-
cal function and the diagnosis of HE88. Studies show that with a 
cut-off value of <39 Hz, CFF has a sensitivity of 39%, specificity 
of 82%, and diagnostic accuracy of 70.6% for MHE82,88. CFF is an 
important and simple tool for diagnosis and should be combined 
with the model for end stage liver disease (MELD) score for better  
diagnosis89. MELD is a scoring system used to grade the severity 
of liver disease90.

A prospective study of 117 consecutive patients with cirrhosis 
examined the administration of the CFF to detect HE91. The authors 

found that MHE was associated with a reduced 5-year survival 
rate in patients with cirrhosis91. CFF could be used in the future to 
improve the accuracy of prognosis in patients with cirrhosis91.

Another study focused on Stroop testing, which tests psychomotor 
speed, attention, and cognitive flexibility92 in the form of an app 
coined EncephalApp. The app’s reliability was tested compared to 
the gold standard tests and was validated by multicenter and multi-
national analysis in the USA with over 800 subjects92. Another 
validation of the EncephalApp was done with 437 cirrhotics and 
308 controls, and it was compared with PHES and the inhibitory 
control test (ICT)93. When compared against the controls, the app 
was found to be equivalent in predicting HE, thus proving to be a 
convenient and validated method for the diagnosis of HE93.

Currently, the analysis of EEG patterns in children is used for grad-
ing HE in ALF94. Nonetheless, EEG use in HE remains controver-
sial. One study recorded EEGs in 69 healthy controls and 113 adults 
with cirrhosis95. New spectral thresholds were calculated and opti-
mized the performance of EEG for the diagnosis of HE95. Though 
improvements were made in the use of EEG for the diagnosis of 
HE, validation is needed along with further research to understand 
the pathophysiological mechanism behind the EEG changes95–97.

Key changes in brain function have been studied with functional 
magnetic resonance imaging (MRI)98 in combination with arterial-
spin labeling to enhance the detection of HE99. Connectivity status 
between 90 brain regions was assessed by measuring blood flow. 
HE showed impairment in the ganglia–thalamo–cortical circuits, 
with increased blood flow in the right putamen99.

Acknowledging the multiple etiologies of HE, researchers inves-
tigated if the cause of HE affected its presentation on imaging. 
Neurocognitive, biochemical, and brain MRI changes have been 
examined in patients with cirrhotic HE and extrahepatic portal 
vein obstruction (EHPVO) HE100. Serum studies showed no change 
in ammonia levels while cytokine levels were higher in cirrhotic 
HE100. Cirrhotic HE showed imaging changes that were absent in 
EHPVO HE100. Cirrhotic HE affected multiple brain sites ranging 
from the frontal lobe all the way to the brainstem100.

Spontaneous brain activity can also be measured by examining  
the amplitude of low-frequency fluctuation (ALFF) in the 
MRI101. It can be used as a biomarker for the detection of HE101.  
Upcoming research focuses on ALFF in combination with blood 
oxygenation level-dependent functional MRI, creating new  
opportunities for the diagnosis of HE102.

Cerebral blood flow is altered in HE. Regional cerebral blood flow 
was studied by comparing dogs with congenital portosystemic 
shunt with HE to controls using nuclear imaging103. It showed  
decreased perfusion of subcortical and temporal regions in dogs 
with HE103. This highlights the role that nuclear imaging, specifi-
cally single photon emission computed tomography, can play in 
helping diagnose HE103.

Metabolic profiling analyzes body fluids or tissues by  
measuring low-molecular-weight compounds using either 1H-NMR 
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spectroscopy or mass spectrometry techniques104. Currently, it is used 
in hepatocellular carcinoma; however, its use in HE had not been 
previously studied104. Studies have shown that metabolic profiling  
can distinguish overt HE, but it cannot discriminate between  
differing grades of HE or according to the severity of underlying 
liver disease104.

Recent research on the treatment of hepatic 
encephalopathy
Gut microbiome
The gut microbiome is implicated in the pathogenesis of HE105–108. 
Urease-producing bacteria predominantly lead to elevated levels 
of ammonia and serve as a target for many treatments109. A cross-
sectional study set out to determine the species of gut microbiota 
predominant in HE and suggested that an absence of Blastocystis 
spp. led to dysbiosis.

Proton pump inhibitors (PPIs), a major treatment for gastroesopha-
geal reflux, have been shown to be related to HE110–112. While the 
exact mechanism underlying this association is not known, it is cur-
rently thought to be due to alterations in the gut microbiome. PPIs 
have a known association with gut dysbiosis110–112. A case-control 
study of one million people in Taiwan followed for an average of 
nearly 14 years demonstrated that in patients with both cirrhosis 
and HE, 38% used a PPI112; all categories of PPIs, except rabepra-
zole, led to an increased risk of HE112. It is crucial to recognize the 
irreversible consequences that can occur with non-specific selection 
of treatment for reflux. Likewise, a meta-analysis showed that those 
with liver dysfunction who took a PPI had a higher risk of develop-
ing HE compared to those who did not take a PPI110.

Recognizing the importance of the gut microbiome hypotheses 
has led to study of the role of probiotics in HE113,114. A meta-analy-
sis of randomized trials suggested that probiotics are more effec-
tive in decreasing hospitalization rates, improving MHE, and 
preventing progression to overt HE115. Similarly, a further meta-
analysis by the Cochrane collaboration revealed that when com-
pared to placebo, probiotics mildly improved recovery, decreased  
overt HE, improved quality of life, and mildly decreased 
plasma ammonia116–118. Of note, probiotics have no effect on  
mortality116–118. Because of the low quality of evidence, no direct 
conclusions can be made, as more research is needed116–118.  
A double-blind randomized placebo-controlled clinical trial stud-
ied the effectiveness of VSL#3119 in Chandigarh, India. This 
study demonstrated reductions in hospitalizations and severity of  
breakthrough episodes of HE as well as improvement in PHES  
and liver function in patients receiving VSL#3119.

Diet changes have been studied to determine their effects on cogni-
tive function in patients with MHE with cirrhosis120. One study in 
2016 compared patients prescribed a diet with a caloric restriction 
of 30–35 kcal/kg and a protein intake of 1.0–1.5 g of vegetable 
protein/kg to a control group for six months120. PHES was used to 
diagnose HE. They found that a higher proportion of patients on the 
prescribed diet had reversal of HE (71.1% versus 22.9%, p=0.001) 
along with a decreased incidence of overt HE in the treatment group 
(10% versus 21.7%, p=0.4)120.

Alteration in the gut–brain axis in HE has led to investigations in 
determining the effectiveness of gut-selective antibiotics. Modu-
lating the gut microbiota with the use of antibiotics such as rifax-
imin may improve cognitive performance in cirrhotics121–126. This 
hypothesis was tested in a study at the Hunter Holmes McGuire 
VA Medical Center127. Patients with confirmed HE were prescribed 
rifaximin 550 mg oral twice a day over a period of eight weeks127. 
Compared to the placebo group, the treatment group had cognitive 
improvement, decreased endotoxemia, and a modest decrease in 
bacteria of the small bowel127.

A retrospective, observational, cross-sectional study examined the 
efficacy of different rifaximin dosing (400 mg three times daily ver-
sus 550 mg twice daily)128. There was no difference in readmission 
rates between the two treatment groups128. The long-term cost effec-
tiveness of lactulose monotherapy versus lactulose plus rifaximin 
was studied in France129. Despite having no effect on hospital length 
of stay, combination therapy led to lower readmission rates at 180 
days compared to lactulose alone130. The authors concluded that 
rifaximin was a cost-effective and affordable treatment for patients 
suffering from at least two prior events of HE129.

Hyperammonemia
As stated above, numerous studies have shown that ammonia is key 
in the pathogenesis of HE. Currently, the gold-standard treatment 
for the reduction of ammonia during HE is lactulose131, although 
a number of other experimental drugs aimed at lowering ammo-
nia have been trialed including ornithine phenylacetate (OP)9,132–134 
and L-ornithine L-aspartate (LOLA)135–137. A major breakthrough 
came with an investigation of bacterial-DNA translocation effects 
on hyperammonemia and neurocognitive scores in patients with HE 
after the use of lactulose131. The authors showed that neurocognitive 
scores improved with lactulose use and also led to reduced bacte-
rial-DNA translocation131.

Evidence is mounting that the use of polyethylene glycol (PEG), 
with or without lactulose, is effective. A randomized controlled 
trial in 40 patients compared the use of lactulose versus combined 
lactulose and PEG in cirrhotic patients admitted with HE138. There 
was a statistically significant decrease in length of hospital stay (in 
women)138. Surprisingly, there was no effect on ammonia levels138. 
Likewise, the HELP randomized trial found that, compared to lac-
tulose, PEG led to more rapid HE resolution in the hospital and 
concluded that it was superior to standard lactulose therapy139.

Studies are investigating albumin transfusion as a possible treat-
ment for HE140. A prospective randomized controlled trial  
investigated lactulose alone versus lactulose plus albumin140.  
Combination treatment of lactulose plus albumin led to a  
decrease in levels of ammonia, IL-6, IL-18, and TNF-α and other 
endotoxins140.

Studies are also investigating branched chain amino acid (BCAA) 
supplementation in advanced liver disease. The ratio of normal 
BCAAs to aromatic amino acids becomes reduced in HE141. Ran-
domized controlled studies show that BCAA supplementation  
does not prevent the development of HE but may slow down the 
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progression of hepatic failure141,142. Despite BCAAs having no 
effect on mortality, 16 randomized controlled clinical trials have 
shown that BCAAs decrease the signs and symptoms of HE143. 
Conflicting studies exist, with some stating BCAAs have no signifi-
cant effect on HE144.

Recent studies have examined the use of corticosteroid administra-
tion in patients with acute liver injury and ALF145. A prospective 
observational study of 469 patients from 2004 to 2015 showed that 
high-dose therapy decreased the risk of HE, but the time to initiate 
therapy has yet to be established145.

Surgical treatment
As might be predicted, liver transplantation has been shown to 
improve the brain activity and cognitive function of patients with 
cirrhosis with or without HE146. Zhang et al. studied the effect of 
liver transplant on resting-state brain activity by quantizing the 
ALFF before and one month after transplant. Cognitive function 
improved in both groups with and without encephalopathy, show-
ing transplant as a viable treatment option for HE146.

In a case report, a 73-year-old male presented with new-onset HE 
and was found to have a congenital portosystemic shunt with a nor-
mal liver histology. Correction of the shunt led to full reversal of his 
symptoms147. This highlights a surgically correctable cause of acute 
HE without underlying liver disease.

An increase in shunt blood bypassing the liver owing to por-
tal hypertension can result in HE. Surgical interventions to close 
these shunts have been studied as a possible treatment for HE148.  
Percutaneous transhepatic obliteration (PTO) and percutane-
ous transhepatic sclerotherapy (PTS) are two methods used to 
close shunts in the setting of emergent variceal hemorrhage when 
other methods have failed148. PTO is performed by placing metal-
lic coils in the afferent veins to reduce blood flow, while PTS is 
performed by injecting a sclerosing agent148. Both methods uti-
lize an invasive transcutaneous intrahepatic puncture148. A study 
of 37 patients with variceal hemorrhage and intractable HE  
underwent PTO/PTS148. Blood ammonia levels greatly improved, 
dropping from 135 mg/dL to 65 mg/dL at six months, and there  
was also an improvement in HE148.

TIPS is a procedure that places a stent between the hepatic vein 
and portal vein to alleviate portal hypertension149. However,  
allowing blood to bypass the liver can worsen HE149,150. The size 
of the stent in TIPS has been associated with HE151,152. One study 
showed that the use of a larger diameter stent improved ascites  
without a significant change in HE151,152. Additionally, the con-
sumption of a low-protein diet after TIPS can reduce the incidence 
of HE153. Interestingly, antegrade embolization of spontaneous  
splenorenal shunt has also been employed to decrease the inci-
dence of post-TIPS HE and has decreased the rate of variceal  
bleeding154.

Balloon-occluded retrograde transvenous obliteration (BRTO) is 
an alternative or adjuvant to TIPS in the management of gastric  

varices155. It works by abolishing gastrorenal or splenorenal 
shunts155. A retrospective record-based study of patients who  
underwent BRTO for gastric variceal bleeding or refractory HE 
showed great improvement in grade of encephalopathy after 
BRTO155.

Conclusions
This review summarizes the advances made in basic and clinical 
research over the last three years that have furthered our understand-
ing of the pathophysiology of HE and possible treatments. Recent 
developments in basic research have focused on the role of hyper-
ammonemia, oxidative stress, neuroinflammation, neurotransmitter 
function, bile acids, and the blood–brain barrier. More research is 
needed in these areas to fully establish the mechanism behind these 
various components and the role they play in the pathophysiology 
of HE. The diagnosis of HE is being investigated and is expected to 
become more precise by optimizing and validating current scoring 
systems. It appears that at least some of these will be amenable to 
modern app technology. Research in non-invasive imaging is also 
active and promises to aid in the diagnosis of HE. Strides have been 
made in the treatment of HE by specifically targeting the gut micro-
biome and hyperammonemia.
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